Package: spatstat.random 3.3-2

Adrian Baddeley

spatstat.random: Random Generation Functionality for the 'spatstat' Family

Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes including simple sequential inhibition, Matern inhibition models, Neyman-Scott cluster processes (using direct, Brix-Kendall, or hybrid algorithms), log-Gaussian Cox processes, product shot noise cluster processes and Gibbs point processes (using Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler, or coupling-from-the-past perfect simulation). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics). Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'.

Authors:Adrian Baddeley [aut, cre, cph], Rolf Turner [aut, cph], Ege Rubak [aut, cph], Tilman Davies [aut, cph], Kasper Klitgaard Berthelsen [ctb, cph], David Bryant [ctb, cph], Ya-Mei Chang [ctb, cph], Ute Hahn [ctb], Abdollah Jalilian [ctb], Dominic Schuhmacher [ctb, cph], Rasmus Plenge Waagepetersen [ctb, cph]

spatstat.random_3.3-2.tar.gz
spatstat.random_3.3-2.zip(r-4.5)spatstat.random_3.3-2.zip(r-4.4)spatstat.random_3.3-2.zip(r-4.3)
spatstat.random_3.3-2.tgz(r-4.4-x86_64)spatstat.random_3.3-2.tgz(r-4.4-arm64)spatstat.random_3.3-2.tgz(r-4.3-arm64)spatstat.random_3.3-2.tgz(r-4.3-x86_64)
spatstat.random_3.3-2.tar.gz(r-4.5-noble)spatstat.random_3.3-2.tar.gz(r-4.4-noble)
spatstat.random_3.3-2.tgz(r-4.4-emscripten)spatstat.random_3.3-2.tgz(r-4.3-emscripten)
spatstat.random.pdf |spatstat.random.html
spatstat.random/json (API)
NEWS

# Install 'spatstat.random' in R:
install.packages('spatstat.random', repos = c('https://spatstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/spatstat/spatstat.random/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

point-processesrandom-generationsimulationspatial-samplingspatial-simulation

10.93 score 5 stars 164 packages 69 scripts 63k downloads 172 mentions 165 exports 8 dependencies

Last updated 2 months agofrom:0f7faa797f. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 18 2024
R-4.5-win-x86_64OKOct 18 2024
R-4.5-linux-x86_64OKOct 18 2024
R-4.4-win-x86_64OKOct 18 2024
R-4.4-mac-x86_64OKOct 18 2024
R-4.4-mac-aarch64OKOct 18 2024
R-4.3-win-x86_64OKOct 18 2024
R-4.3-mac-aarch64OKOct 18 2024
R-4.3-mac-x86_64OKSep 18 2024

Exports:as.owin.rmhmodelchange.default.expandclusterfieldclusterfield.characterclusterfield.functionclusterkernelclusterkernel.characterclusterradiusclusterradius.characterdatagen.rpoisppOnLinesdatagen.runifpointOnLinesdatagen.runifpoisppOnLinesdefault.clipwindowdefault.expanddefault.rmhcontroldetect.par.formatdknndmixpoisdomain.rmhmodeldpakesexpand.owinexpandwinPerfectfakeNeyScotgauss.hermitegetRandomFieldsModelGenhandle.rshift.argsHermiteCoefsis.cadlagis.expandableis.expandable.rmhmodelis.poissonis.poisson.rmhmodelis.stationaryis.stationary.rmhmodelkraeverkraeverRandomFieldsMultiPair.checkmatrixoptimalinflationpknnpmixpoisppakesprint.rmhcontrolprint.rmhexpandprint.rmhInfoListprint.rmhmodelprint.rmhstartprint.summary.rmhexpandqknnqmixpoisqpakesquadratresampleragsragsAreaInterragsMultiHardRandomFieldsSaferCauchyrCauchyHomrcellrcellnumberrclusterBKBCrDGSrDiggleGrattonreachreach.rmhmodelrecipEnzpoisreheatresolve.vargamma.shaperetrieve.paramrGaussPoissonrGRFcircembedrGRFexporGRFgaussrGRFgencauchyrGRFmaternrGRFstablerHardcorerjitter.psprknnrlabelrLGCPrMatClustrMatClustHomrMaternIrMaternIIrMaternInhibitionrmhrmh.defaultrmhcontrolrmhcontrol.defaultrmhcontrol.listrmhcontrol.rmhcontrolrmhEnginermhexpandRmhExpandRulermhmodelrmhmodel.defaultrmhmodel.listrmhmodel.rmhmodelrmhResolveControlrmhResolveExpansionrmhResolveTypesrmhsnooprmhSnoopEnvrmhstartrmhstart.defaultrmhstart.listrmhstart.rmhstartrmixpoisrMosaicFieldrMosaicSetrmpointrmpoint.I.allimrmpoispprNeymanScottrnoiserpakesrPenttinenrpointrpoint.multirpoislinerpoislinetessrpoisnonzerorpoispprpoispp3rpoisppOnLinesrpoisppxrPoissonClusterrPoissonClusterEnginerpoistruncrPSNCPrshiftrshift.ppprshift.psprshift.splitppprSSIrstratrStraussrStraussHardrtemperrthinrthinclumpsrthinEnginerThomasrThomasHomrunifdiscrunifpointrunifpoint3runifpointOnLinesrunifpointxrunifpoispprunifpoisppOnLinesrVarGammaspatstatClusterModelInfospatstatClusterSimInfospatstatClusterSimModelMatchspatstatRmhInfosummarise.trendsummary.rmhexpandthinjumpthinParentsupdate.rmhcontrolupdate.rmhstartvalidate.kappa.muwill.expandWindow.rmhmodel

Dependencies:deldirlatticeMatrixpolyclipspatstat.dataspatstat.geomspatstat.univarspatstat.utils

Readme and manuals

Help Manual

Help pageTopics
The spatstat.random Packagespatstat.random-package spatstat.random
Convert Data To Class owinas.owin.rmhmodel
Field of clustersclusterfield clusterfield.character clusterfield.function
Extract Cluster Offspring Kernelclusterkernel clusterkernel.character
Compute or Extract Effective Range of Cluster Kernelclusterradius clusterradius.character
Default Expansion Rule for Simulation of Modeldefault.expand
Set Default Control Parameters for Metropolis-Hastings Algorithm.default.rmhcontrol
Mixed Poisson Distributiondmixpois pmixpois qmixpois rmixpois
Extract the Domain of any Spatial Objectdomain.rmhmodel
Pakes distributiondpakes ppakes qpakes rpakes
Apply Expansion Ruleexpand.owin
Gauss-Hermite Quadrature Approximation to Expectation for Normal Distributiongauss.hermite
Recognise Stationary and Poisson Point Process Modelsis.poisson is.poisson.rmhmodel is.stationary is.stationary.rmhmodel
Resample a Point Pattern by Resampling Quadratsquadratresample
Alternating Gibbs Sampler for Multitype Point Processesrags
Alternating Gibbs Sampler for Area-Interaction ProcessragsAreaInter
Alternating Gibbs Sampler for Multitype Hard Core ProcessragsMultiHard
Simulate Neyman-Scott Point Process with Cauchy cluster kernelrCauchy
Simulate Baddeley-Silverman Cell Processrcell
Generate Random Numbers of Points for Cell Processrcellnumber
Simulate Cluster Process using Brix-Kendall Algorithm or ModificationsrclusterBKBC
Perfect Simulation of the Diggle-Gates-Stibbard ProcessrDGS
Perfect Simulation of the Diggle-Gratton ProcessrDiggleGratton
Interaction Distance of a Point Process Modelreach reach.rmhmodel
First Reciprocal Moment of the Truncated Poisson DistributionrecipEnzpois
Simulate Gauss-Poisson ProcessrGaussPoisson
Perfect Simulation of the Hardcore ProcessrHardcore
Random Perturbation of Line Segment Patternrjitter.psp
Theoretical Distribution of Nearest Neighbour Distancedknn pknn qknn rknn
Random Re-Labelling of Point Patternrlabel
Simulate Log-Gaussian Cox ProcessrLGCP
Simulate Matern Cluster ProcessrMatClust
Simulate Matern Model IrMaternI
Simulate Matern Model IIrMaternII
Simulate point patterns using the Metropolis-Hastings algorithm.rmh
Simulate Point Process Models using the Metropolis-Hastings Algorithm.rmh.default
Set Control Parameters for Metropolis-Hastings Algorithm.rmhcontrol rmhcontrol.default
Specify Simulation Window or Expansion Rulermhexpand
Define Point Process Model for Metropolis-Hastings Simulation.rmhmodel
Build Point Process Model for Metropolis-Hastings Simulation.rmhmodel.default
Define Point Process Model for Metropolis-Hastings Simulation.rmhmodel.list
Determine Initial State for Metropolis-Hastings Simulation.rmhstart rmhstart.default
Mosaic Random FieldrMosaicField
Mosaic Random SetrMosaicSet
Generate N Random Multitype Pointsrmpoint
Generate Multitype Poisson Point Patternrmpoispp
Simulate Neyman-Scott ProcessrNeymanScott
Random Pixel Noisernoise
Perfect Simulation of the Penttinen ProcessrPenttinen
Generate N Random Pointsrpoint
Generate Poisson Random Line Processrpoisline
Poisson Line Tessellationrpoislinetess
Generate Poisson Point Patternrpoispp
Generate Poisson Point Pattern in Three Dimensionsrpoispp3
Generate Poisson Point Pattern on Line SegmentsrpoisppOnLines
Generate Poisson Point Pattern in Any Dimensionsrpoisppx
Simulate Poisson Cluster ProcessrPoissonCluster
Random Values from the Truncated Poisson Distributionrpoisnonzero rpoistrunc
Simulate Product Shot-noise Cox ProcessrPSNCP
Random Shiftrshift
Randomly Shift a Point Patternrshift.ppp
Randomly Shift a Line Segment Patternrshift.psp
Randomly Shift a List of Point Patternsrshift.splitppp
Simulate Simple Sequential InhibitionrSSI
Simulate Stratified Random Point Patternrstrat
Perfect Simulation of the Strauss ProcessrStrauss
Perfect Simulation of the Strauss-Hardcore ProcessrStraussHard
Simulated Annealing or Simulated Tempering for Gibbs Point Processesrtemper
Random Thinningrthin
Random Thinning of Clumpsrthinclumps
Simulate Thomas ProcessrThomas
Generate N Uniform Random Points in a Discrunifdisc
Generate N Uniform Random Pointsrunifpoint
Generate N Uniform Random Points in Three Dimensionsrunifpoint3
Generate N Uniform Random Points On Line SegmentsrunifpointOnLines
Generate N Uniform Random Points in Any Dimensionsrunifpointx
Simulate Neyman-Scott Point Process with Variance Gamma cluster kernelrVarGamma
Update Control Parameters of Metropolis-Hastings Algorithmupdate.rmhcontrol
Test Expansion Rulewill.expand
Extract Window of Spatial ObjectWindow.rmhmodel