spatstat - Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests
Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
Last updated 1 days ago
cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics
16.02 score 198 stars 41 dependents 5.4k scripts 12k downloadsspatstat.geom - Geometrical Functionality of the 'spatstat' Family
Defines spatial data types and supports geometrical operations on them. Data types include point patterns, windows (domains), pixel images, line segment patterns, tessellations and hyperframes. Capabilities include creation and manipulation of data (using command line or graphical interaction), plotting, geometrical operations (rotation, shift, rescale, affine transformation), convex hull, discretisation and pixellation, Dirichlet tessellation, Delaunay triangulation, pairwise distances, nearest-neighbour distances, distance transform, morphological operations (erosion, dilation, closing, opening), quadrat counting, geometrical measurement, geometrical covariance, colour maps, calculus on spatial domains, Gaussian blur, level sets of images, transects of images, intersections between objects, minimum distance matching. (Excludes spatial data on a network, which are supported by the package 'spatstat.linnet'.)
Last updated 5 days ago
classes-and-objectsdistance-calculationgeometrygeometry-processingimagesmensurationplottingpoint-patternsspatial-dataspatial-data-analysis
11.93 score 7 stars 216 dependents 233 scripts 44k downloadsspatstat.utils - Utility Functions for 'spatstat'
Contains utility functions for the 'spatstat' family of packages which may also be useful for other purposes.
Last updated 4 days ago
spatial-analysisspatial-dataspatstat
11.51 score 5 stars 236 dependents 138 scripts 50k downloadsspatstat.data - Datasets for 'spatstat' Family
Contains all the datasets for the 'spatstat' family of packages.
Last updated 2 months ago
kernel-densitypoint-processspatial-analysisspatial-dataspatial-data-analysisspatstatstatistical-analysisstatistical-methodsstatistical-testsstatistics
10.84 score 7 stars 217 dependents 120 scripts 50k downloadsspatstat.random - Random Generation Functionality for the 'spatstat' Family
Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes including simple sequential inhibition, Matern inhibition models, Neyman-Scott cluster processes (using direct, Brix-Kendall, or hybrid algorithms), log-Gaussian Cox processes, product shot noise cluster processes and Gibbs point processes (using Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler, or coupling-from-the-past perfect simulation). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics). Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'.
Last updated 4 months ago
point-processesrandom-generationsimulationspatial-samplingspatial-simulationcpp
10.68 score 5 stars 166 dependents 84 scripts 33k downloadsspatstat.explore - Exploratory Data Analysis for the 'spatstat' Family
Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Last updated 14 days ago
cluster-detectionconfidence-intervalshypothesis-testingk-functionroc-curvesscan-statisticssignificance-testingsimulation-envelopesspatial-analysisspatial-data-analysisspatial-sharpeningspatial-smoothingspatial-statistics
10.01 score 1 stars 141 dependents 67 scripts 35k downloadsspatstat.univar - One-Dimensional Probability Distribution Support for the 'spatstat' Family
Estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.
Last updated 3 months ago
9.77 score 3 stars 230 dependents 1 scripts 44k downloadsspatstat.linnet - Linear Networks Functionality of the 'spatstat' Family
Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.
Last updated 1 days ago
density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models
9.47 score 7 stars 43 dependents 32 scripts 10k downloadsspatstat.model - Parametric Statistical Modelling and Inference for the 'spatstat' Family
Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.
Last updated 3 days ago
analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference
8.89 score 5 stars 47 dependents 6 scripts 10.0k downloadsspatstat.sparse - Sparse Three-Dimensional Arrays and Linear Algebra Utilities
Defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms.
Last updated 6 months ago
arrayssparse-matrixsparse-representations
8.54 score 2 stars 143 dependents 5 scripts 27k downloadsRandomFields - Simulation and Analysis of Random Fields
Methods for the inference on and the simulation of Gaussian fields are provided. Furthermore, methods for the simulation of extreme value random fields are provided. Main geostatistical parts are based among others on the books by Christian Lantuejoul <doi:10.1007/978-3-662-04808-5>.
Last updated 3 years ago
openblascppopenmp
4.59 score 7 stars 696 scripts 1.1k downloadsRandomFieldsUtils - Utilities for the Simulation and Analysis of Random Fields and Genetic Data
Various utilities are provided that might be used in spatial statistics and elsewhere. It delivers a method for solving linear equations that checks the sparsity of the matrix before any algorithm is used.
Last updated 8 months ago
fortranopenblascppopenmp
1.96 score 91 scripts 307 downloads