spatstat.utils - Utility Functions for 'spatstat'

Contains utility functions for the 'spatstat' family of packages which may also be useful for other purposes.

Last updated 1 days ago

spatial-analysisspatial-dataspatstat

5 stars 9.16 score 0 dependencies 227 dependents

spatstat.data - Datasets for 'spatstat' Family

Contains all the datasets for the 'spatstat' family of packages.

Last updated 11 days ago

kernel-densitypoint-processspatial-analysisspatial-dataspatial-data-analysisspatstatstatistical-analysisstatistical-methodsstatistical-testsstatistics

5 stars 9.02 score 3 dependencies 212 dependents

spatstat - Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

Last updated 2 days ago

cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics

189 stars 7.98 score 19 dependencies 43 dependents

spatstat.model - Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Last updated 2 days ago

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

5 stars 7.23 score 17 dependencies 48 dependents

spatstat.linnet - Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Last updated 2 days ago

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

6 stars 7.19 score 18 dependencies 45 dependents