Package: spatstat 3.3-0

Adrian Baddeley

spatstat: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

Authors:Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut]

spatstat_3.3-0.tar.gz
spatstat_3.3-0.zip(r-4.5)spatstat_3.3-0.zip(r-4.4)spatstat_3.3-0.zip(r-4.3)
spatstat_3.3-0.tgz(r-4.4-any)spatstat_3.3-0.tgz(r-4.3-any)
spatstat_3.3-0.tar.gz(r-4.5-noble)spatstat_3.3-0.tar.gz(r-4.4-noble)
spatstat_3.3-0.tgz(r-4.4-emscripten)spatstat_3.3-0.tgz(r-4.3-emscripten)
spatstat.pdf |spatstat.html
spatstat/json (API)
NEWS

# Install 'spatstat' in R:
install.packages('spatstat', repos = c('https://spatstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/spatstat/spatstat/issues

On CRAN:

cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics

16.14 score 198 stars 41 packages 5.1k scripts 19k downloads 172 mentions 10 exports 19 dependencies

Last updated 6 days agofrom:4b50cebe0d. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 27 2024
R-4.5-winOKNov 27 2024
R-4.5-linuxOKNov 27 2024
R-4.4-winNOTENov 27 2024
R-4.4-macNOTENov 27 2024
R-4.3-winNOTENov 27 2024
R-4.3-macNOTENov 27 2024

Exports:beginnerbugfixesfoolatest.changeslatest.newsplot.fooprint.autoexecprint.bugtableprint.changetablespatstat.family

Dependencies:abinddeldirgoftestlatticeMatrixmgcvnlmepolycliprpartspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilstensor

Analysing Replicated Point Patterns in Spatstat

Rendered fromreplicated.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2021-12-12
Started: 2014-08-11

Bugs Fixed in Spatstat

Rendered frombugfixes.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2024-06-06
Started: 2018-07-27

Datasets Provided for the Spatstat Package

Rendered fromdatasets.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2023-02-01
Started: 2014-11-19

Getting Started with Spatstat

Rendered fromgetstart.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2021-12-12
Started: 2014-08-11

Guide to Function Objects in Spatstat

Rendered fromfv.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2024-07-25
Started: 2023-07-21

Handling shapefiles in the spatstat package

Rendered fromshapefiles.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2024-03-20
Started: 2014-08-11

Summary of Recent Updates to the Spatstat Family

Rendered fromupdates.Rnwusingutils::Sweaveon Nov 27 2024.

Last update: 2024-11-19
Started: 2014-08-11